Proceedings, State of Beef Conference November 2 and 3, 2016, North Platte, Nebraska

HEALTH CONSIDERATIONS FOR THE CALF, SETTING UP FOR SUCCESS

Jerry Stokka, DVM, North Dakota State University

Health Assurance: Molecular Genetic Technology

Identifies parentage and verifies animal identity

Clarifide Plus for Dairy

Wellness trait index Mastitis Metritis

> Displaced abomasum Ketosis

Retained Placenta

NUMBER PROVINCE

100

Health Assurance: Genetic Effect - Heterosis Cows producing crossbred calves had greater immunoglobulin concentrations in the milk than cows producing purebred calves (Bos taurus X Bos indicus). Sire of fetus effect on dam's lactation. Heterosis of the fetus influences maternal production of colostral immunoglobulins.

ANNAL SCENCES

Vann et al J.An.Sci. 1996

<section-header><section-header><list-item><text><text><text>

Health Assurance: Nutrition
 Developmental Programming Runt piglets. The lower preveaning growth of runt pigs cannot be entirely explained based on their lower birth weight, nor do they show full postnatal compensatory growth. Effects of uterine crowding are analogous to the detrimental effects of nutritional restriction in gestating sows on fetal myogenesis, birth weight, and postnatal growth.
The biological basis for prenatal programming of postnatal performance in pigs G. R. Foxcroft, W. T. Dixon, S. Novak, C. T. Putman JAS 2006

Health Assurance: Developmental Programming

Variable CON' SUP' SEM2 P-value Gestation length, d 277 276 1.1 0.43 Second stage labor length, min 48 57 15 0.66 Calving ease ³ 1.87 1.44 0.36 0.39 Colostrum weight, g 614 837 95 0.10 Colostrum IgG, gy 79 107 14 0.18 Valence at 457, CON (n - 15), control group consuming based dist; SUP (n + 12), supplemented group consuming based dist; SUP (n + 12),		Diet					
Second stage labor length, min Li Li Li Li Li Calving ease ³ 1.87 1.44 0.36 0.39 Colostrum weight, g 614 837 95 0.10 Colostrum IgG, mg/mL 119.1 130.2 6.6 0.23 Colostrum IgG, g 79 107 14 0.18 Watemai dets: CVX (n = 15), control group consuming basal det SUP (n = 12), supplemented group consuming basal det = votes Weither n = 1.2 119.1 119.1	Variable	CON1	SUP1	SEM ²	P-value		
length, min 48 57 15 0.06 Calving ease ³ 1.87 1.44 0.36 0.39 Colostrum weight, g 614 837 95 0.10 Colostrum IgG, mg/mL 119.1 130.2 6.6 0.23 Colostrum IgG, g 79 107 14 0.18 Winternal diets, COV (n = 15), control group consuming basal diet SUP (n = 12), supplemented group consuming basal diet + 39% bits, supplemented group consuming basal diet + 39% bits, supplemented group consuming basal diet + 30% bits, sup	Gestation length, d	277	276	1.1	0.43		
Colostrum weight, g 614 837 95 0.10 Colostrum IgG, mg/mL 119.1 130.2 6.6 0.23 Colostrum IgG, g 79 107 14 0.18 Whend detty: CV (n = 15), control group consuming basal det SUP (n = 12), supplemented group consuming basal det = *26M km a 14.2 500 km 24.5 500 km 24.5							
Colostrum IgG, mg/mL 119.1 130.2 6.6 0.23 Colostrum IgG, g 79 107 14 0.18 Maximal diret, CON (n = 15), control group consuming basal det: SUP (n = 12), supplemented group consuming basal det = ***********************************	Calving ease ³	1.87	1.44	0.36	0.39		
Colostrum IgG, g 79 107 14 0.18 "Maternal idlets: CON (n = 15), control group consuming basal diet : SOP (n = 12), supplemented group consuming basal diet + DOGS at 03/95 W. SSE Not n = 12,	Colostrum weight, g	614	837	95	0.10		
Maternal dist : 2011 (a = 15), control group consuming basal diet: SUP (n = 12), supplemented group consuming basal diet + DDGS at 0.0% BW. *3EM for n = 12.	Colostrum IgG, mg/mL	119.1	130.2	6.6	0.23		
DDGS at 0.30% BW. 2SEM for n = 12.	Colostrum IgG, g	79	107	14	0.18		

	CC	s supplementation from d 201 to 270 of gestation CON ¹ SUP ¹ P-value						
Variable	0 h	24 h	0 h	24 h	SEM ²	Diet	Time	Diet × time
pН	7.38	7.52	7.34	7.44	0.41	0.11	0.00 2	0.71
Hemoglobin, g/L	125.0	112.8	131.6	122.2	4.6	0.07	0.02	0.75
lgG, mg/dL	380	3150	300	3790	270	0.21	<0.0 01	0.21
Protein, g/dL	4.15	5.85	4.22	6.45	1.8	0.05	<0.0 01	0.12
Maternal diets; CON (n = 15), control group consuming basal diet; SUP (n = 12), supplemented group consuming basal diet + DDGS at 0.3% BW. ³ SEM for n = 12.								

Passive Transfer & CMI

- Maternal cells in colostrum cross intestinal barrier and become systemic.
- Transfer of live maternal cells from colostrum to neonatal calves enhanced responses to antigens against which the dams had previously responded (BVDV), but not to antigens to which the dams were naïve.
- Cell-mediated immune transfer to neonates can be enhanced by maternal vaccination.
 - Archambault et al AJVR 1988

Donovan et al. Am J Vet Res 2007;68:778-782

©.

Risk of Disease & Failure of passive transfer (FPT)

Calves with inadequate immunoglobulin concentrations at 24 hours of age were 3.2-9.5 times more likely to become sick and 5.4 times more likely to die prior to weaning.

Levels <u><800mg</u> of IgG/dl are considered inadequate. Wittum, TE, Perino, LJ AJVR Sep 1995

Calves with serum IgG1 levels up to 2500 mg/dl were 1.5% more likely to get sick before weaning and 2.4% more light and 2.4% more likely to get sick before weaning and and

Calving Stress & Environmental Stress

Health Assurance: Colostral Absorption & Calving Stress Decreased IgG1 absorption from colostrum was associated

- with respiratory acidosis (stress).
- Acidosis was frequently observed in calves that experience dystocia.
 - Besser, T.E.; Szenci, O.; Gay, C.C. JAVMA 1990 pp1239-1243

Impact of Artificial Mothering

Table 2. Description of newborn heifer calves either artificially mothered by verbal and physical stimulation or handled with minimal stimulation (not mothered) before and after colostrum feeding

Treatment group								
Item	Not mothered (n = 20)	Mothered(n = 21) Pval						
Prefeeding sampl	e (0 h)							
Total protein (g/dL 0.18	4.5 ± 0.3 (3.9 to 5.0)	4.6 ± 0.2 (4.0 to 5.1)						
IgG (mg/mL) 0.38	0.3 ± 0.1 (0.2 to 0.5)	0.2 ± 0.1 (0.2 to 0.6)						
Postfeeding sample (24 h)								
Total protein (g/c IgG (mg/mL) AEA of IgG	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	5.4 ± 0.3 (4.9 - 6.0) 15.0 ± 2.5 (10.4 - 18.8) 36.7 ± 4.3 (30.6 - 45.0)	0.10 0.21 0.86					
Haines, DM, Godden, SM, J. Dairy Sci. 94 :1536–1539								
NLSU 22 / N2/K -	ANNAL SCENCES		<u>100</u>					

ANNAL SCIENCES

100

Health Assurance: Impact of Inadequate Maternal Immunity

- Growth performance was impacted in calves with inadequate colostral intake/absorption due to its effect on neonatal morbidity(sickness).
- Neonatal morbidity(1st 28 days) resulted in a 35 pound reduced weaning weight.

Wittum TE, Perino LJ AJVR Sep. 1995

