Alkaline Treatment of Residue
Matt Luebbe and Adam Shreck

Introduction
- Energy costs
- Alternative resources
- Availability of residues
 - Corn
 - Wheat
 - Soybean stubble

Replacing corn
- WDGS
 - ~130% value of corn @ 40% diet DM (Bremer et al., 2010)
- Roughage
 - Decreased performance (Bartle et al., 1994)
 - Higher cost per unit energy
 - Feeding treated roughage with WDGS
- Limited research
 - NE, IA, IL

History
- Chemical treatment began in 1880’s
 - Started with paper making
 - Observation of increased cellulose digestibility
- Alkali
- Peroxides
- Ammonia

Beckman Method
- 1920’s
- NaOH
- Soak residue for 18 h to 3 days
- 2 tank system
- High water requirement
- Pollution
- DM losses 20-25%
- Modifications improved feasibility
 - Combining NaOH and CaOH

Hydrolitic
- 1. Sodium Hydroxide
- 2. Calcium Hydroxide
- 3. Potassium Hydroxide
- 4. Ammonium Hydroxide
- 5. Anhydrous Ammonia
- 6. Urea

Oxidative
- 1. Hydrogen Peroxide
- 2. Ozone
- 3. Sulfur Dioxide
- 4. Sodium Chlorite
- 5. Peracetic Acid

GOAL disrupt polysaccharide-lignin associations
Hydrolytic

- 1. Partial solubilization of hemicellulose
- 2. Above 5% NaOH some lignin and silica solubilized
- 3. Disruption of intermolecular hydrogen bonding of cellulose
- 4. Increased rate of fiber hydration
- 5. Increased rate of bacterial colonization
- 6. Decreased lag time

Van Soest, Berger

Oxidative

- 1. Reduction in cell wall lignin
- 2. Cleave glycosidic linkages of cell wall polysaccharides
- 3. Increase in soluble carbohydrate concentration
- 4. Usually more effective with dicots than monocots

Van Soest, Berger

Goal: Increase pH

- pH needs to be above 8
- Fermentation is not desired
- Acidifying process making treatment less effective
- Combination with ethanol byproducts for storage
 - DGS pH 3.0-3.5
- Storage vs ensiling

Use of chemical treatment to enhance digestibility

NaOH:
- Jared and Donefer, 1970
- Hogan and Weston, 1971
- Saxena et al., 1971
- Anderson and Ralston, 1973
- Klopfenstein and Koers, 1973
- Rounds and Klopfenstein, 1974
- Waller and Klopfenstein, 1975
- Todorov, 1975
- Garrett et al., 1976
- Rexen and Thomsen, 1976
- Chesson et al., 1981
- Wang et al. 2004

CaOH:
- Rounds and Klopfenstein, 1974
- Waller and Klopfenstein, 1975
- Waller et al., 1976
- Leosing et al., 1980

Digestibility

NaOH > CaO
NaOH + CaO = \uparrowNaOH

Use of chemical treatment to enhance digestibility

- Crystallinity is a highly ordered 3-dimensional structure which may impair digestibility.
 - For example, raw cotton fiber is highly crystalline cellulose and digests slowly.
 - When soaked in NaOH, the cotton fiber swells and becomes amorphous. Hydrogen bonding is reduced and rate and extent of cellulose digestion increase.
Know how. Know now.

Berger 2012 Review

NaOH
- 1. DM intake increased 22% when summarized 24 studies
- 2. Averaged over 32 studies, DM digestibility increased 30%
- 3. All diets > 60% treated residue

Anhydrous
- 1. DM intake increased 22% averaged over 21 treated crop residues
- 2. DM digestibility increased 15% averaged over 32 studies
- 3. Usually ~ 33% of the NH₃ is retained.
- 4. Temperature, water content, length of reaction time influences effectiveness

Current

CaO
- Quicklime
- Less caustic than other treatments
- Cost competitive
- Improvement of digestibility
- No detrimental impacts on fields receiving manure
- Need the dietary calcium anyway
- CaOH should work similar, but less heat, and need slightly more

Challenges

NaOH
- Cost of chemicals
- Na in manure
- Safety-handling
- Length of reaction time
- Storage
- Feasibility
- What about inclusion in finishing diets?

CaO + H₂O
Release of heat
- 2 parts water +1 part lime
- Solution will boil

Thermochemical
- Heat + releasing bonds

CaO (s) + H₂O ⇌ (l) Ca(OH)₂ (aq)
Shreck et al., 2011
- Optimize use of chemical treatments
 - Factors:
 - DM
 - Chemical
 - Reaction Length
 - Ambient Temperature
 - Forage type

Effects on Digestibility

Summary of in vitro work
- Chemical treatment, relative to control:
 - 3%CaO 2%NaOH: 15% unit increase in DMD
 - 4%CaO 1%NaOH: 14% unit increase in DMD
 - 5% CaO: 11% unit increase in DMD

- DM:
 - 35%: 1.25% reduction
 - 50%: optimum

- Temperature, relative to room temp (30°C)
 - 40°C: 1% unit increase

- 7 d treatment

Treating Stover-Step 1.
- Ground (Mighty Giant, Jones Mfg, Beemer, NE)
 - 3-in screen

Treating Stover-Step 2.
- CaO added at 5% (DM-basis) of forage

Treating Stover-Step 3.
- Granular CaO
 - Standard quicklime (1/4")
 - >98% purity
 - 71% Ca
 - $350/ton

Treating Stover-Step 4.
- Water added to equal 50% DM
Treating Stover-Step 5.
- Bagged and stored for at least one week prior to feeding

Table 1. Dietary treatments Exp 1101
<table>
<thead>
<tr>
<th>Ingredient, % of DM</th>
<th>Control</th>
<th>Wheat Straw</th>
<th>Corn Stover</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMC</td>
<td>25.5</td>
<td>18.0</td>
<td>18.0</td>
</tr>
<tr>
<td>DRC</td>
<td>25.5</td>
<td>18.0</td>
<td>18.0</td>
</tr>
<tr>
<td>Stover-treated¹</td>
<td>5.0</td>
<td>20.0</td>
<td>20.0</td>
</tr>
<tr>
<td>Stover-not treated</td>
<td>4.0</td>
<td>40.0</td>
<td>40.0</td>
</tr>
<tr>
<td>WDGS</td>
<td>40.0</td>
<td>40.0</td>
<td>40.0</td>
</tr>
<tr>
<td>Straw-treated</td>
<td>—</td>
<td>20.0</td>
<td>—</td>
</tr>
<tr>
<td>Stover-treated</td>
<td>—</td>
<td>—</td>
<td>20.0</td>
</tr>
<tr>
<td>Cobs-native¹</td>
<td>3.3</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Wheat straw-native</td>
<td>3.3</td>
<td>—</td>
<td>20.0</td>
</tr>
<tr>
<td>Corn stover-native</td>
<td>3.3</td>
<td>—</td>
<td>20.0</td>
</tr>
<tr>
<td>Supplement²</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
</tbody>
</table>

¹Treated with 5% CaO and water added to 50% DM
²Formulated to provide 360 mg/hd/d Rumensin and 90 mg/hd/d Tylan

15% units replacement

Table 2. Diets
<table>
<thead>
<tr>
<th>Ingredient, % of DM</th>
<th>Control</th>
<th>Wheat Straw</th>
<th>Corn Stover</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRC</td>
<td>46.0</td>
<td>36.0</td>
<td>36.0</td>
</tr>
<tr>
<td>WDGS</td>
<td>40.0</td>
<td>40.0</td>
<td>40.0</td>
</tr>
<tr>
<td>Straw-treated</td>
<td>—</td>
<td>20.0</td>
<td>—</td>
</tr>
<tr>
<td>Stover-treated</td>
<td>—</td>
<td>—</td>
<td>20.0</td>
</tr>
<tr>
<td>Cobs-native¹</td>
<td>3.3</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Wheat straw-native</td>
<td>3.3</td>
<td>—</td>
<td>20.0</td>
</tr>
<tr>
<td>Corn stover-native</td>
<td>3.3</td>
<td>—</td>
<td>20.0</td>
</tr>
<tr>
<td>Supplement²</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
</tbody>
</table>

¹20% cobs treated and native (data not shown)
²Balanced for Ca:P

360 calf-feds- 822 lb
15% units replacement
Call-feds and yearlings

<table>
<thead>
<tr>
<th>Ingredient, % of DM</th>
<th>Control</th>
<th>Treated</th>
<th>Untreated</th>
<th>Treated</th>
<th>F-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMC</td>
<td>25.5</td>
<td>18.0</td>
<td>18.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRC</td>
<td>25.5</td>
<td>18.0</td>
<td>18.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stover-treated¹</td>
<td>—</td>
<td>20.0</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stover-not treated</td>
<td>5.0</td>
<td>—</td>
<td>20.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDGS</td>
<td>40.0</td>
<td>40.0</td>
<td>40.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplement²</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹Treated with 5% CaO and water added to 50% DM
²Formulated to provide 360 mg/hd/d Rumensin and 90 mg/hd/d Tylan

Carcass-adjusted performance - Call feds

Call-feds (n=192) fed from Nov-May, 8 pens/trt

<table>
<thead>
<tr>
<th>Item</th>
<th>Control</th>
<th>Treated</th>
<th>Native</th>
<th>F-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMI, lb/d</td>
<td>22.4</td>
<td>22.4</td>
<td>22.9</td>
<td>0.42</td>
</tr>
<tr>
<td>ADG, lb</td>
<td>3.67</td>
<td>3.61</td>
<td>3.24</td>
<td><0.01</td>
</tr>
<tr>
<td>F:G</td>
<td>6.36</td>
<td>6.22</td>
<td>7.05</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Carcass-adjusted performance - Yearlings

Yearlings (n=192) fed from June-Oct, 8 pens/trt

<table>
<thead>
<tr>
<th>Item</th>
<th>Control</th>
<th>Treated</th>
<th>Native</th>
<th>F-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMI, lb/d</td>
<td>26.8</td>
<td>27.6</td>
<td>28.8</td>
<td><0.01</td>
</tr>
<tr>
<td>ADG, lb</td>
<td>4.18</td>
<td>4.04</td>
<td>3.77</td>
<td><0.01</td>
</tr>
<tr>
<td>F:G</td>
<td>6.42</td>
<td>6.85</td>
<td>7.65</td>
<td><0.01</td>
</tr>
</tbody>
</table>
Quality control

- Best to have original (untreated) sampled
- Measurements
 1. DM (water only)
 2. Chemical (Ca)
 3. Amount of NDF solubilized
 4. pH
 5. In vitro digestibility
- Lab energy calculation can be incorrect

<table>
<thead>
<tr>
<th></th>
<th>Untreated</th>
<th>Treated</th>
<th>% unit</th>
<th>% change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer-2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Straw</td>
<td>88.5</td>
<td>69.9</td>
<td>18.6</td>
<td>21.0</td>
</tr>
<tr>
<td>Stover</td>
<td>87.8</td>
<td>74.7</td>
<td>13.1</td>
<td>15.0</td>
</tr>
<tr>
<td>Winter-2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stover</td>
<td>77.9</td>
<td>65.8</td>
<td>12.1</td>
<td>18.1</td>
</tr>
<tr>
<td>Summer-2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Straw</td>
<td>82.9</td>
<td>71.6</td>
<td>11.3</td>
<td>13.6</td>
</tr>
<tr>
<td>Stover</td>
<td>82.2</td>
<td>71.0</td>
<td>11.2</td>
<td>13.7</td>
</tr>
</tbody>
</table>

pH

- Tends to decline over the feeding period

Energy value of treated residue

<table>
<thead>
<tr>
<th>Item</th>
<th>OM Digestibility</th>
<th>% Increase</th>
<th>% Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>In vitro</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Straw</td>
<td>27.9</td>
<td>43.0</td>
<td>68.4</td>
</tr>
<tr>
<td>Stover</td>
<td>24.3</td>
<td>34.9</td>
<td>51.7</td>
</tr>
<tr>
<td>In vivo, 25% inclusion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Straw</td>
<td>69.3</td>
<td>78.4</td>
<td>52.4</td>
</tr>
<tr>
<td>Stover</td>
<td>66.3</td>
<td>78.4</td>
<td>73.2</td>
</tr>
</tbody>
</table>

Energy value-Relative to corn

- NRC (1996) using performance of control
 - NE\textsubscript{L} and NE\textsubscript{g} adjusters
- Assume:
 - MDGS: 112 TDN (125% energy value of corn)
 - WDGS: 118 TDN (130% energy value of corn)
 - Corn stover/wheat straw 41 TDN
 - Book values for corn
Summary

- Including 20% treated stalks/straw with 40% wet/modified DG:
 - Similar performance
 - Similar carcass
 - Lower diet cost

- We have future plans, need funding