Sire Selection Basics: Getting ready to buy your next bull

Matt Spangler, Ph.D. Extension Beef Genetics Specialist University of Nebraska-Lincoln

	CI	3	B	W	1	ww	YW	MCE	MM	MWW
Adj.			9	0		700	1320			
Ratio			10)1		107				
EPD	9		-1	.0		25	49	3	11	23
Acc	.29)	.3	7		.30	.27	.18	.19	.23
	YG	N	ſarb	B	F	REA	RI	T	TEND	MARB
Adj.		4.6	5%	.23		12.5				
Ratio		106	6	100		95	7		6	8
EPD	.21	.44		.05		39				
Acc	.32	.31		.33		.34				

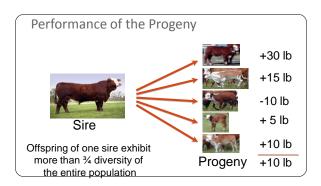
Fundamentals

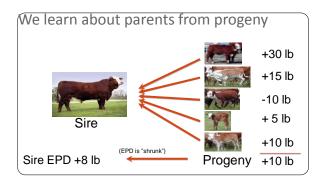
- P=G+E
- Phenotype = Mean + BV + Environment
- 600= 550 + 10 +40
- 600=550 + (-5) + 55

Raw data

- Includes all sources of variation
 - Management (i.e. feed)
 - Differences in age
 - Sex
 - Age of dam
 - Climate
 - Genetics

Adjusted data

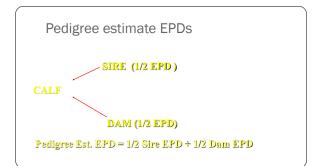

- What are they 'adjusted' for?
 - Sex
 - Age
 - Age of dam
- Why?
 - Compare 'apples to apples'


Ratios

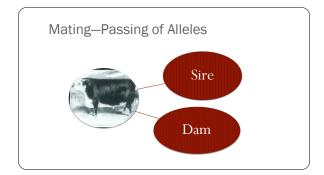
- A way of comparing animals within a contemporary group
 - Contemporary group average = 500 • Animal = 550
 - Ratio = 110
 - (550/500)*100
- Why not outside of that group?
 - Different environmental influences
 - Group averages may not be equal

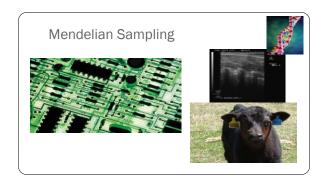
EPDs

- Expected Progeny Difference
- Separates the 'wheat from the chaff'
- What information is included?
 - Pedigree information (Parental and collateral relatives)
 - Individuals' own record
 - Progeny information
 - Can be used across herds but only within a breed

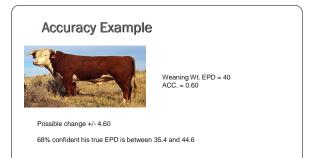


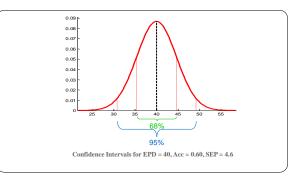
EPDs on widely-used old sires are accurate

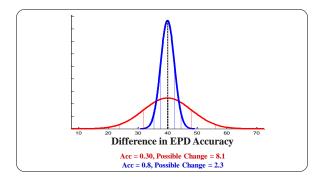



With enough progeny, this is usually close to the bulls true EPD

Sire EPD +8 lb



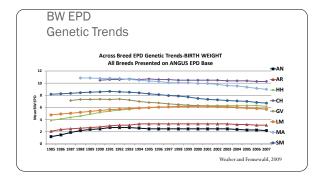

Accuracy

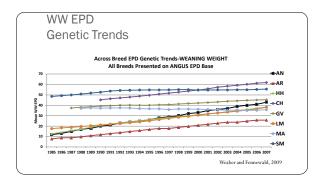

- EPDs are estimates
 - Accuracy tells use how close the estimate is to the true value
- NOT a measure of progeny variability
- IS a measure of how much an EPD could change
 Way of quantifying risk
- Increases with additional data

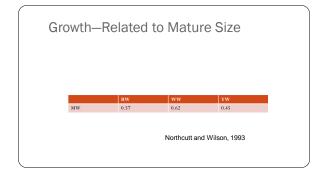
Possible Change

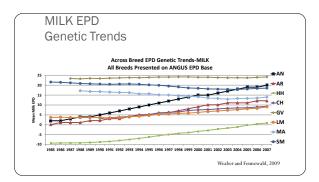
- Values are standard deviations
- Possible change = standard error of prediction (SEP)
- Low accuracy means larger possible change values
- Not static
 - Different for each breed, trait, and could differ between evaluations

Accuracy


Table 1. Approximate number of progeny needed to reach accuracy levels (true (r) and the BIF standard) for three heritabilities (h^2) .


0.1			$h^2(0.3)$	$h^2(0.5)$
0.1	0.01	1	1	1
0.2	0.02	2	1	1
0.3	0.05	4	2	1
0.4	0.08	8	3	2
0.5	0.13	13	5	3
0.6	0.2	22	7	4
0.7	0.29	38	12	7
0.8	0.4	70	22	13
0.9	0.56	167	53	30
0.999	0.99	3800	1225	700


MBV B	IF Accuracy	/
Genetic Correlation	% GV	BIFAccuracy
0.1	1	0.005
0.2	4	0.020
0.3	9	0.046
0.4	16	0.083
0.5	25	0.132
0.6	36	0.2
	49	0.286


Percentile Rank

- Locates a bulls EPD relative to other bulls in the breed.
- EPD at upper 25th percentile
 - 24 out of 100 bulls better
 - 75 out of 100 bulls worse
- $\bullet\,$ Easy way to evaluate the where bull ranks in breed
- Use Non-Parent percentiles for yearlings
- Measure of 'extremeness'
- Record breed averages in your Red Book!

Webster

- Optimum
- 1: the amount or degree of something that is most favorable to some end; *especially*: the most favorable condition for the growth and reproduction of an organism
- 2: greatest degree attained or attainable under implied or specified conditions

Economic Efficiency

	Low	Med.	High	
Income				
Weaning	496.40	493.60	501.10	
Slaughter	810.1	808.40	789.40	
Expense				
Weaning	549.80	553.40	568.80	
Slaughter	814.20	837.50	828.30	
Econ. Eff.				
Weaning	90.3	89.2	88.1	
Slaughter	99.5	96.5	95.3	

Why is multiple trait selection...

- Difficult?
 - Lots of EPDs
 - Some for Economically Relevant Trait (ERT) some for Indicator Traits
- Important?
 - More than one trait is important for enterprise, operation or industry profitability

Economic Index Values

- Method of multiple trait selection on aggregate merit
- Collection of EPDs multiplied by economic values
- A particular index represents EPDs relevant to a breeding objective
 - i.e. retained ownership and sell on a grid
- No accuracy values
- But they can change!

Selection Index

- Two Step approach by Henderson (1950s)
 Calculate predictions of merit (EPD) for each trait in selection objective
 Weight each prediction by it's Relative Economic Value (REV)
- Equivalent to Hazel approach

$$H = a_1 EPD_1 + a_2 EPD_2 + \ldots + a_n EPD_n$$

INDEPENDENT CULLING LEVELS

CED = 2.1 WW = 43 MM = 18 SC = 0.9 IMF = 0.04

	CED	ww	ММ	SC	IMF	\$BMI
1	2.5	55	20	1.0	0.10	20.16
2	5.0	50	25	1.2	-0.10	19.55
3	4.0	45	20	1.0	0.25	20.35
4	1.6	62	19	1.0	0.20	21.64

2/5/2009

Using Selection Indexes

- Use your marketing endpoint to guide you to 'right' index
- Apply independent culling levels to EPDs you know limit production in your environment (CED, MILK)
- Limit use of other EPDs in selection criteria (decreases selection pressure)
- Use \$Index to guide you to the bull with the most optimal combination of traits
- Use \$Index just like other EPDs

Heterosis

• Hybrid Vigor

- Superiority of a crossbred animal as compared to the average of its straightbred parents
- More divergent parental lines = more heterosis
- NOT available from within breed matings

Inversely re	lated		
<u>Trait</u>	Heritability	<u>Heterosis</u>	
Reproduction (fertility)	Low	High	
Production (growth)	Moderate	Moderate	
Product (carcass)	High	Low	

Breed	Birth wt.	Weaning wt.	Yearling wt.	Milk
Angus	0.0	0.0	0.0	0.0
Charolais	8.5	40.1	48.9	4.6
Gelbvieh	3.8	3.9	-10.4	10.2
Hereford	2.8	-1.5	-17.1	-18.7
Limousin	3.6	0.9	-31.3	-13.4
Red Angus	2.3	-1.5	-8.7	-1.5
Saler	2.0	-0.3	-10.5	0.5
Shorthorn	5.9	17.9	41.7	19.6
Simmental	4.8	25.9	24.5	15.3

Determini	ng bio	ological t	ypes	
Simm. Bull act EPD Simm. Adj.	2.3 <u>+4.8</u>	34.0 +25.9	57.0 +24.5	6.0 +15.3
	7.1	59. <mark>9</mark>	81.5	21.3
Heref. Bull act EPD	3.8	35.0	60.0	13.0
Heref Adj.	+2,8	-1.5	-17.1	-18.7
	6.6	33.5	42.9	-5.7
Diff	0.5	26.4	38.6	27.0

Making sense of it all

- Concentrate on Economically Relevant Traits (ERTs)
- Understand the differences between sources of information
- Know that EPDs and Economic Index values are more valuable than actual records or ratios
 - EPD 7-9 times more effective in generating response to selection than actual measurements

Remember the fundamentals

- Animals Record = His/her genetics + the environment
 Phenotype = genotype + environment
- What can be passed on?
 - Bull's actual record?
 - The environment?
 - Bull's genetics?
 - Then why not use the tools that measure only this?