Use of corn silage instead of corn and dry stalks	
Dirk Burken, Galen Erickson, Terry Klopfenstein, Brandon Nuttelman, Adam McGee Cody Schneider, Jana Harding	Lincoln
	101
	Know how. Know now.

Why corn silage	Nebraska
Relative to corn and dry stover:	Lincoli
Retain solubles in the plant	
 Get high-moisture corn 	
 Guarantee inventory 	
Fits in integrated feedlot-crop oper	ations
 Historically: silage was better at hig prices 	gh-grain
 Corn \$250/dry ton (\$6/bu) 	
At 8.5X corn price: Silage is \$	51/ton as-is
At 35% DM, \$146/ton DM	
 Corn = \$250 and Silage = \$15 Residue is worth \$50 at 50:50 	

Know how. Know

Histo	orical da	ata					Nebi	Lincoln
			Co	orn silag	e%ino	liet		
	10	20	30	40	50	60	70	80
ADG	2.52	2.49	2.43	2.36	2.28	2.17	2.05	1.91
DMI	15.3	15.7	16.0	16.1	16.2	16.0	15.6	15.1
F:G	6.06	6.32	6.58	6.84	7.10	7.36	7.62	7.88
Profit	25.09	25.10	26.49	29.33	32.03	34.74	37.10	39.27
Corr	1: \$3.50/bi	u; Silage: S	\$26.45/tor	n (32% DN	1)			
						Goodric	h et al., 19	974
						Kn	ow how. Kn	ow now.

Historical da	ata			Nebraska
	Silage	e digest	ibility	Lincoln
ITEM	15CS	30CS	45CS	lin quad
DMD	80.6	79.1	79.3	.36 .47
OMD	81.2	80.3	80.5	.65 .66
Rumen pH	5.78	5.85	5.99	F-test: 0.03
			Ericksor	et al., 2000
			Kn	ow how. Know now.

Historical of Yearling I	lata (summer 98	3)		Neb	Lincoln
	15CS	30CS	45CS	lin	quad
ADG	3.64	3.15	3.31	.01	.01
DMI	23.9	23.9	23.6	.32	.52
F:G	6.54	7.58	7.09	.02	.01
HCW	808	764	778	.01	.01
MARB	502	513	485	.16	.07
FAT	.42	.39	.37	.02	.67
			Erickson	et al., 20 v how. Kr	

Historical of	lata			Neb	Lincoln
Calves (wi	inter) 98-99)			
	15CS	30CS	45CS	lin	quad
ADG	3.51	3.39	3.12	.01	.27
DMI	20.3	21.5	21.4	.01	.07
F:G	5.78	6.33	6.85	.01	.47
HCW	850	837	806	.01	.25
MARB	553	506	474	.01	.65
FAT	.54	.50	.43	.06	.74
			Erickson e	et al., 20	000
			Know	how. Kr	now now.

Historical of	data			Nebraska
Yearling II	(summer 99	9)		Lincoll
	15CS	30CS	45CS	
ADG	3.70	3.47	3.34	
DMI	24.7	24.5	24.1	
F:G	6.67	7.04	7.19	
HCW	838	820	810	
MARB	558	561	525	
FAT	.48	.44	.49	
			Know	how. Know now.

Historical da	ıta			Nebi	aska
		Perfo	rmance		Lincoln
ITEM	15CS	30CS	45CS	lin	quad
Initial wt., lb	787	788	788	.95	.78
Final wt., lb	1342 1	301 1	287	.01	.05
DMI, lb/d	22.9	23.3	23.0	.79	.10
ADG, lb	3.61	3.33	3.25	.01	.01
F:G	6.32	6.94	7.04	.01	.01
fat, in.	.48	.44	.43	.02	.39
marbling	538	527	495	.01	.35
			Erickso	on et al., 200	00
			К	now how. Kno	w now.

Historical data Old Silage econ Yearling economic c		on	Nebraska Lincoln
	15 CS	30 CS	45 CS
Diet cost, \$/ton	74.85	73.04	71.28
Cost of gain, \$/cwt	41.76	47.55	44.43
Breakeven, \$/cwt	64.28	67.78	66.21
(fed to same wt as	15 CS)		
Cost of gain, \$/cwt		46.99	43.99
Breakeven, \$/cwt		66.43 Erickson	65.20 et al., 2000
		Kno	w how. Know now.

Historical data			Nebraska
Old Silage econo	omics		Lancourt
Calf economic comp	arison		
	15 CS	30 CS	45 CS
Diet cost, \$/ton	75.94	73.74	71.46
Cost of gain, \$/cwt	38.82	40.91	43.44
Breakeven, \$/cwt	62.06	63.53	65.61
(if fed to same wt a	s 15 CS)		
Cost of gain, \$/cwt		40.81	43.06
Breakeven, \$/cwt		63.11 Erickson	64.26 et al., 2000
		Knov	w how. Know now.

Why corn silage Nebraska
 Hypothesize
Perhaps silage is more competitive today
 Grain price
 Lots of interest in using residue but dry stalks lose the solubles
How does it fit with wet distillers grains
Had some evidence of synergy
Know how. Know new.

36 per		Method: ead pei		324 calf	-fed ste	ers
•173 D	OF					
Harves	sted 5-	9-12				
Ingredient	15:40	30:40	45:40	55:40	45:0	30:65
Corn Silage	15.0	30.0	45.0	55.0	45.0	30.0
oom onage		40.0	40.0	40.0		65.0
MDGS	40.0	40.0				
	40.0 20.0	12.5	5.0		25.0	
MDGS			5.0 5.0		25.0 25.0	
MDGS Dry rolled corn	20.0	12.5		 5.0		 5.0

		Treatment			P-va	alue
ltem	15:40	30:40	45:40	55:40	Lin	Quad
Final BW	1426	1403	1375	1335	<0.01	0.21
DMI	23.15	22.77	22.70	21.92	0.01	0.45
ADG	4.04	3.92	3.76	3.53	<0.01	0.19
F:G	5.73	5.81	6.03	6.21	<0.01	0.33
Dress %	63.3	62.6	61.2	61.1	<0.01	0.54
Marbling	556	557	543	532	0.13	0.52
Fat thickness	0.55	0.53	0.52	0.43	<0.01	0.09
7						
6 5 4 3						
2 1 0 15;4		-1.5% 30:40		5.0%	-7.7%	
				15:40	55:4	

Corn Silage Feedlot Performance								
	Tre	atment	Lincoli					
Item	45:40	45:0	P-value					
Final BW	1375	1340	0.02					
DMI	22.70	22.26	0.30					
ADG	3.76	3.55	0.02					
F:G	6.03	6.28	0.04					
Dress %	61.9	61.1	0.07					
Marbling	543	539	0.85					
Fat Thickness	0.52	0.49	0.29					
	Tre	Treatment						
Item	30:40	30:65	P-value					
Final BW	1403	1353	<0.01					
DMI	22.77	21.66	0.01					
ADG	3.92	3.62	<0.01					
F:G	5.81	5.98	0.12					
Dress %	62.6	62.1	0.19					
Marbling	557	547	0.55					
Fat Thickness	0.53	0.50	0.29					
			Know how Know now					

Corn Silage Feedlot Economics Nebraska
 Corn silage priced at 8, 8.5 and 9 times corn
 i.e. \$28/ton unshrunk 35% DM silage at \$3.50 corn
 Using NE custom rates, corn silage pricing:
8.6 times price of corn at \$3.50/bu
8.4 times price of corn at \$5.00/bu
8.2 times price of corn at \$6.50/bu
Know how. Know now.

Corn Silage	e Feedlot Economics Nebraska
 Materials 	and Methods
 Cattle p 	ourchase cost
15:4	0 steers at breakeven
DOFc=	DOF required for 1375 lb
Cattle s	ales at \$1667.92/steer
Other Assumptions	
Cattle Interest	7.5% * purchase price -\$200/steer down
Ingredient price	MDGS= 90% of corn, Supplement= corn
Ingredient shrink	1% for corn, supplement; 5% for MDGS; 10% for corn silage
Feed costs	Diet DM cost * DMI * DOFc
Feed Interest	7.5% * 1/2 feed costs * DOFc/365
Yardage	\$0.45/steer/day
Medicine/Processing	\$20/steer
Death loss	1%
	Know how. Know now.

	Seasor	1 Length1		and the set of a
Item	MEM	MLM	P-value	
Grain Yield	190.7	199.3	0.02	
DM Yield	10.95	11.34	<0.01	
Grain, %	56.00	56.67	<0.01	and the second second
Residue NDF	64.18	65.54	<0.01	
Residue TDN	47.50	48.21	0.04	
Corn Plant TDN	71.49	71.27	0.22	
¹ MEM= Moderately ea MLM= Moderately ia				

Plai	nting Densi	ty (plants/a	acre)	<i>P</i> -v	alue
20,000	26,000	32,000	38,000	Lin.	Quad
166.4	198.9	203.5	211.2	<0.01	<0.01
9.84	10.93	11.67	12.14	<0.01	<0.01
54.25	55.71	55.94	55.42	<0.01	<0.01
63.07	63.98	65.82	66.58	<0.01	0.84
49.10	48.00	47.36	46.96	<0.01	0.32
71.53	71.60	71.37	71.00	0.02	0.22
	20,000 166.4 9.84 54.25 63.07 49.10	20,00026,000166.4198.99.8410.9354.2555.7163.0763.9849.1048.00	20,000 26,000 32,000 166.4 198.9 203.5 9.84 10.93 11.67 54.25 55.71 55.94 63.07 63.98 65.82 49.10 48.00 47.36	20,000 26,000 32,000 38,000 166.4 198.9 203.5 211.2 9.84 10.93 11.67 12.14 54.25 55.71 55.94 55.42 63.07 63.98 65.82 66.58 49.10 48.00 47.36 46.96	20,000 26,000 32,000 38,000 Lin. 166.4 198.9 203.5 211.2 <0.01

Corn Silage Plot Research

- •Corn silage production depends of decisions:
 - Hybrid or season length
 - Planting density
 - Harvest timing
- •Harvest timing has most profound impact.
 - Harvest as corn silage or corn grain and stover?

Know how. Know

	UNIVERSI	TY OF NEBRASKA	-LINCOLN	this site, all UNL or for a person			
o://beef.unl.edu	UNL + UNR + UNL Extensio	on > Beef - Home					
	Home Learning	g Modules Educational Programs	Ask an Expert Beef Bas Study Co	ics Home Find a Faculty surses Expert			
	UNL Beef						
	Navigation	or other states have	the second	Educational Programs			
	Home Learning Modules			Beef Profit Tips - Hult County Dec 7, 1:38 PH , Hot County Courthouse			
	Beef Production Calendar		1 2 11 11	Beef Profit Tips - Boyd County Dec 7, 7:01 PM , Boyd County Counthouse			
	Beef Cattle Production	ALL MARKED AND	11 m2 54	Beef Profit Tips - Neligh Dec 8, 1:00 PM , Antelope County			
	Current Ag Prices			Courthouse Beef Profit Tips - Center, NE			
	Profit Tips	Grazing Corn Stalk R	Dec 8, 9:00 PH , Center Beef Profit Tips - Norden				
	International Marketing	Seems that annual cow costs get higher each year, or at least they		Dec 12, 11:00 AM , Keya Paha County Fairgrounds			
	Reports	can potentially increase each year.					
	By-Product Feeds	Drought has increased forages prices nationally. There are some	Beef Home Study Course				
	FAQs	management practices that are	Open Enrollment				
	Additional University Resources Market journal	essential to consider this year. Having the cows graze to meet their nutrient needs is less expensive than having to carry har be an inexpensive option.	ested forages to them. Crop residues o	more in-depth look at beef			
	Veterinary Extension	When grazing residue, cattle will se					
	Animal Science Department	husk and leaf and finally the cob an constalk residue diet consumed or					
	UNL Extension Publications	TDN) at first to low (48 to 52 perce stocking rate (number of cows per	the components of beef production				
	University of Nebraska Great Plains Veterinary		e grain and husk are being removed at	a much techniques and programs that match their production goals.			
	Ranch Practicum – University of Nebraska	In the Midwest, weather records in grazing days for crop residue is 65					
	UNL Water: Livestock Manure Management	factor in successfully grazing crop Stocking rate influences the amount	alternative feeds, a "systems" perspective, understanding and				
	Beef Cattle Reproduction	The amount of grain and husk avail	t or grain, nusk, and rear available per a lable affect diet quality because both an pestibility is affected by stocking rate.	e highly NRC nutrition requirements,			
	Beef Industry Scholars		pestibility is affected by stocking rate, ilable, and environmental factors. Stock	ing and many others. Courses			