

Outiline Nebiaska

- Why corn silage?
- Feeding corn silage (historically)
- Is feeding corn silage different today
- With byproducts
- With new economics
- Conclusion and options

Historical data Nebraska				
Yearling I (summer 98)				
	15CS	30CS	45CS	lin quad
ADG	3.64	3.15	3.31	. $01 \quad .01$
DMI	23.9	23.9	23.6	. $32 \quad .52$
F:G	6.54	7.58	7.09	. $02 \quad .01$
HCW	808	764	778	. $01 \quad .01$
MARB	502	513	485	. $16 \quad .07$
FAT	. 42	. 39	. 37	. $02 \quad .67$
			Eriokson	etal. 2000

Historice				Nebias	
Calves (er) 98-99				
	15CS	30CS	45CS	lin qu	
ADG	3.51	3.39	3.12	. 01	. 27
DMI	20.3	21.5	21.4	. 01	07
F:G	5.78	6.33	6.85	. 01	47
HCW	850	837	806	. 01	25
MARB	553	506	474	. 01	65
FAT	. 54	. 50	. 43	. 06	74
			Erickson et	al. 2000	

Historical data				Nebraska	
Silage Performance Combined 3 experiments					
ITEM	15CS	30CS	45CS	lin	quad
Initial wt., lb	787	788	788	. 95	. 78
Final wt., ıb	1342	1301	1287	. 01	. 05
DMI, ib/d	22.9	23.3	23.0	. 79	. 10
ADG, ib	3.61	13.33	3.25	. 01	. 01
F:G	6.32	2 6.94	7.04	. 01	. 01
fat, in.	. 48	. 44	. 43	. 02	. 39
marbling	538	527		. 01	. 35
Erickson et al., 2000					

Hisiorical data Nebiaska			
Old Silage economics			
Calf economic comparison			
	15 CS	30 CS	45 CS
Diet cost, \$/ton	75.94	73.74	71.46
Cost of gain, \$/cwt	38.82	40.91	43.44
Breakeven, \$/cwt	62.06	63.53	65.61
(if fed to same wt as 15 CS)			
Cost of gain, \$/cwt		40.81	43.06
Breakeven, \$/cwt		63.11	64.26

Hearling II (summer 99)			
	15CS	30CS	45CS
ADG	3.70	3.47	3.34
DMI	24.7	24.5	24.1
F:G	6.67	7.04	7.19
HCW	838	820	810
MARB	558	561	525
FAT	. 48	. 44	. 49

Historical data Nebiaska		
Yearling economic comparison		
15 CS	30 CS	45 CS
Diet cost, \$/ton 74.85	73.04	71.28
Cost of gain, \$/cwt 41.76	47.55	44.43
Breakeven, \$/cwt 64.28	67.78	66.21
(fed to same wt as 15 CS)		
Cost of gain, \$/cwt	46.99	43.99
Breakeven, \$/cwt	66.43	65.20
son e		

Why corn silage
- Hypothesize
- Perhaps silage is more competitive today
- Grain price
- Lots of interest in using residue but dry
- stalks lose the solubles
- How does it fit with wet distillers grains
- Had some evidence of synergy

Corn Silace - eedot Performance Nebraska				
	Treatment			Licoon
Item	45:40	45:0	P-value	
Final BW	1375	1340	0.02	
DMI	22.70	22.26	0.30	
ADG	3.76	3.55	0.02	
F:G	6.03	6.28	0.04	
Dress \%	61.9	61.1	0.07	
Marbling	543	539	0.85	
Fat Thickness	0.52	0.49	0.29	
		tment		
Item	30:40	30:65	P-value	
Final BW	1403	1353	<0.01	
DMI	22.77	21.66	0.01	
ADG	3.92	3.62	<0.01	
F:G	5.81	5.98	0.12	
Dress \%	62.6	62.1	0.19	
Marbling	557	547	0.55	
Fat Thickness	0.53	0.50	0.29	
			Know	how. Know now.

Corn Silage Feedlot Economics
-Corn silage priced at $8,8.5$ and 9 times corn
•i.e. $\$ 28 /$ ton unshrunk 35% DM silage at
$\$ 3.50$ corn
-Using NE custom rates, corn silage pricing:
$\quad 8.6$ times price of corn at $\$ 3.50 / \mathrm{bu}$
$\quad 8.4$ times price of corn at $\$ 5.00 / \mathrm{bu}$
-8.2 times price of corn at $\$ 6.50 / \mathrm{bu}$

Corn Silage Feedlot Economics
- Economic assumptions were applied to
performance data to determine:
-Profit per head
-Cost of gain
-Corn grain priced at $\$ 3.50, \$ 5.00$, and $\$ 6.50 /$ bu

Corn Sliage plot Research Nebraska

-Corn silage production needs to accomplish:
-Corn silage yield
-Corn silage nutritive quality
-Flexibility-corn grain yield
-With or without residue harvest
-Allow feeders to maximize corn silage yield and quality with the flexibility to harvest corn grain when market dictates.
-Objective: Effects of corn hybrid and season length, plant density, and harvest timing on corn plant yield and quality.

| Corn Silade Plot Research |
| :--- | :--- |
| -Corn silage production depends of decisions: |
| -Hybrid or season length |
| -Planting density |
| -Harvest timing |
| -Harvest timing has most profound impact. |
| \quad-Harvest as corn silage or corn grain and |
| stover? |
| |
| Know how.Know now. |

